
CMS Core Design
This chapter is an overview of how a CMS is put together.

In the chapter we will discuss topics such as:

•	 How a CMS's publicly visible part (the "front-end") works

•	 Various ways that the administration part (the "admin area") can be created

•	 Discussion of iles and database layout
•	 Overview of how plugins work

We will also build enough of the basics that we can view a "hello world" page, and
detect missing pages as well.

This chapter will focus more on discussion than on practical examples, although
we'll build a simple practical example at the end.

The "core" of a CMS is its architecture. Just as the motherboard of a computer is its
most important component, without which the CPU, screen, RAM, and other parts
cannot come together, the CMS core is the "backbone" of the CMS. It's what connects
the database, browser interactions, and plugins together.

In this chapter, we will describe the various parts of that core, and over the next few
chapters we will build up that core until we have a stable piece of software, upon
which we can then start developing extensions (plugins).

If you don't want to type out the code to test it, you can download an archive of the
completed project from the Packt website at http://www.packtpub.com/support.

This book's CMS is based on a previously written one called WebME (Website
Management Engine), which has many more plugins written for it than are
described in this book—you can download that version of the project here:
https://code.google.com/p/webworks-webme/.

www.eBookTM.Com

CMS Core Design

[8]

The CMS's private and public areas
A CMS consists of the management area (admin area), and the publicly visible area
(front-end).

The front-end
One very interesting difference between CMS and non-CMS sites is their treatment
of a "web page".

In a non-CMS website, when you request a certain URL from the web server, the web
server sees if the requested ile exists, and if it does, it returns it. Very simple.

This is because there is a very clear deinition of what is a web page, and that is tied
explicitly to the URL. http://example.com/page1.html and http://example.
com/page2.html are two distinct web pages, and they correspond to the iles page1.
html and page2.html in the websites document root.

In a CMS, the deinition might be a bit blurred. Imagine you are in a news section
of the site at http://example.com/news, and this shows an overview of all news
snippets on the website. This might be deined as a page.

Now let's say you "ilter" the news. Let's say there are 60 news items, and only 20 are
shown on the /news page. To view the next 20, you might go to /news?page=2.

Is that a different page? In a non-CMS site, certainly it would be, but in a database-
backed CMS, the deinition of a page can be a little more blurred.

In a CMS, the URLs /news and /news?page=2 may not correspond exactly to two
iles on the server.

Because a CMS is database-backed, it is not necessary to have a separate physical
source ile for every page. For example, there is no need to have a /news ile at all if
the content of that page can be served through the root /index.php ile instead.

When we create a new page in the administration area, there is a choice for the
engine to either write a physical ile that it corresponds to, or simply save it in the
database.

A CMS should only be able to write to iles that are in the public webspace under the
strictest circumstances.

Instead of creating web pages as iles, it is better to use a "controller" to read from
a database, based on what the URL was. This reduces the need for the CMS to
have write-permissions for the publicly visible part of the site, therefore increasing
security.

www.eBookTM.Com

Chapter 1

[9]

There is a popular programming pattern called MVC (Model-View-Controller),
which is very similar in principle to what a CMS of this type does.

In MVC, a "controller" is sent a request. This request is then parsed by the controller,
and any required "model" is initialized and run with any provided data. When the
model is inished, the returned data is passed through a "view" to render it in some
fashion, which is then returned to the requester.

The CMS version of this is: The website is sent a HTTP request. This request is
parsed by the CMS engine, and any required plugins are initialized and run with
the HTTP parameters. Then the plugins are inished, they return their results to the
CMS, which then renders the results using an HTML template, and sends the result
of that back to the browser.

And a real-life example: The CMS is asked for /news?page=2. The CMS realizes
/news uses the "news" plugin and starts that up, passing it the "page=2" parameter.
The plugin grabs the information it needs from the database and sends its result back
to the CMS. The CMS then creates HTML by passing it all through the template, and
sends that back to the browser.

This, in a nutshell, is exactly how the public side (the front-end) of our CMS will work.

So, to rewrite this as an actual process, here is what a CMS does when it receives
a request from a browser:

1. The web server sends the request to the CMS.

2. The CMS breaks the request down into its components—the requested page
and any parameters.

3. The page is retrieved from the database or a cache.

4. If the page uses any plugins, then those plugins are run, passing them the
page content and the request parameters.

5. The resulting data is then rendered into an HTML page through the
template.

6. The browser is then sent the HTML.

This will need to be expanded on in order to develop an actual working
demonstration. In the inal part of this chapter, we will demonstrate the receiving
of a request, retrieval of the page from the database, and sending that page to the
browser. This will be expanded further in later chapters when we discuss templates
and plugins.

www.eBookTM.Com

CMS Core Design

[10]

The admin area
There are a number of ways that administration of the CMS's database can be done:

1. Pages could be edited "in-place". This means that the admin would log into
the public side of the site, and be presented with an only slightly different
view than the normal reader. This would allow the admin to add or edit
pages, all from the front-end.

2. Administration can be done from an entirely separate domain (admin.
example.com, for example), to allow the administration to be isolated from
the public site.

3. Administration can be done from a directory within the site, protected such
that only logged-in users with the right privileges can enter any of the pages.

4. The site can be administrated from a dedicated external program, such as a
program running on the desktop of the administrator.

The method most popular CMSs opt for is to administrate the site from a protected
directory in the application (option 3 in the previous list).

The choice of which method you use is a personal one. There is no single standard
that states you must do it in any particular way. I opt for choice 3 because in my
opinion, it has a number of advantages over the others:

1. Upgrading and installing the front-end and admin area are both done as part
of one single software upgrade/installation. In options 2 and 4, the admin
area is totally separate from the front-end, and upgrades will need to be
coordinated.

2. Keeping the admin area separate from the front-end allows you to have a
navigation structure or page layout which is not dependent on the front-end
template's design. Option 1 suffers if the template is constrained in any way.

3. Because the admin area is within the directory structure of the site itself, it is
accessible from anywhere that the website itself is accessible. This means that
you can administrate your website from anywhere that you have Internet
access.

In this book, we will discuss how a CMS is built with the administration kept in a
directory on the site.

For consistency, even though it is possible to write multiple administrative methods,
such as administration remotely through an RPC API as well as locally with the
directory-based administration area, it makes sense to concentrate on a single
method. This allows you to develop new features quicker, as you don’t need to
write administrative functions twice or more, and it also removes problems where a
change in an API might be corrected in one place but not another.

www.eBookTM.Com

Chapter 1

[11]

Plugins
Plugins are the real power behind how a CMS does its thing. Because every site is
different, it is not practical to write a single monolithic CMS which would handle
absolutely everything, and the administration area of any site using such a CMS
would be daunting—you would have extremely complex editing areas for even the
most simple sites, to cater for all possible use cases.

Instead, the way we handle differences between sites is by using a very simple core,
and extending this with plugins.

The plugins handle anything that the core doesn't handle, and add their own
administration forms.

We will discuss how plugins work later on, but for now, let's just take a quick
overview.

There are a number of types of plugins that a site can use. The most visible are
those which change a page's "type".

A "default" or "normal" page type is one where you enter some text in the admin
area, and that is displayed exactly as entered, on the front-end.

An example of how this might be changed with a plugin is if you have a "gallery"
plugin, where you choose a directory of images in the admin area, and those images
are displayed nicely on the front-end.

In this case, the admin area should look very different from the front end.

How this case is handled in the admin area is that you open up the gallery page,
the CMS sees that the page type is "gallery" and knows that the gallery plugin has
an admin form which can be used for this page (some plugins don't), and so that
form is displayed instead of the normal page form.

On the front-end, similarly, the CMS sees that the page requested is a "gallery" type
page, and the gallery plugin has a handler for showing page data a certain way, and
so instead of simply printing the normal body text, the CMS asks the plugin what to
do and does that instead (which then displays a nice gallery of images).

A less obvious plugin might be something like a logger. In this case, the log plugin
would have a number of "triggers", each of which runs a function in the log plugin's
included iles. For example, the onstart trigger might take a note of the start time of
the page load, and the onfinish trigger might then record data such as how long it
took to load the page (on the server-side), how much memory was used, how large
the page's HTML was, and so on.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

CMS Core Design

[12]

Another word for trigger is event. The words are interchangeable. An event is a
well-established word in JavaScript. It is equivalent to the idea of triggers in database
terminology. I chose to use the word trigger in this book, but they are essentially the
same.

With this in mind, we know that the 6-point page load low that we looked at in the
The front-end section is simplistic—in truth, it's full of little trigger-checks to see when
or if plugins should be called.

Files and databases
In this section, we will discuss how the CMS iles and database tables should be laid
out and named.

Directory structure
Earlier in the chapter, I gave an example URL for a news page, http://example.
com/news. One thing to note about this is that there is no "dot" in it. The non-CMS
examples all ended in .html, but there's no ".whatever" in this one.

One reason this is very good is that it is human-readable. Saying “www dot my site dot
com slash news slash the space book” is a lot easier than saying something like “www dot
my site dot com slash index dot p h p question-mark page equals 437”.

It's also useful, in that if you decide to change your site in a few years to use a totally
different CMS or even programming language, it's easier to reconcile /news on the
old system with /news on the new one than to reconcile /index.php?id=437 with /
default.asp?pageid=437—especially if there are external sites that link to the old
page URL.

In the CMS we are building, we have two ile reference types:

1. References such as /news or /my/page are references to pages, and will be
displayed through the CMS's front controller. They do not exist as actual
iles on the system, but as entries in the database.

2. Anything with a dot in it is a reference to an actual real ile, and will not be
passed to the front controller. For example, something like /f/images/test.
jpg or /j/the-script.js.

This is managed by using a web server module called mod_rewrite to take all HTTP
requests and parse them before they're sent to the PHP engine.

www.eBookTM.Com

Chapter 1

[13]

In our CMS, we will keep the admin area in a directory called /ww.admin. The
reason for this is that the dot in the directory name indicates to the web server that
everything in that directory is to be referenced as an actual ile, and not to be passed
to the front controller. The "ww" stands for "Webworks WebME", the name of the
original CMS that this book's project is based on. You could change this to whatever
you want. WordPress' admin area, for example, is at /wp-admin.

If the directory was just called /admin and you had a page in your CMS also called
"admin", then this would cause ambiguity that we really don't want.

Similarly, if you have a page called "about-applicationname-3.0", this would cause a
problem because the application would believe you are looking for a ile.

The simplest solution is to ban all page names that have dots in them, and to
ensure that any iles speciic to your CMS all have dots in them. This keeps the
two strictly apart.

Another strategy is to not allow page names which are three characters or less
in length. This then allows you to use short names for your own purposes. For
example, using "/j/" to hold all your JavaScript iles. Single-letter directories can be
considered bad-practice, as it can be hard to remember their purpose when there is
more than one or two of them, so whether you use /j and /f, or /ww.javascript
and /ww.files is up to you.

So, application-speciic root directories in the CMS should have a dot in the name,
or should be three characters or less in length, so they are easily distinguishable
from page names.

The directory structure that I use from the web root is as follows:

/ # web root

/.private # configuration directory

/ww.admin # admin area

/ww.cache # CMS caches

/f # admin-uploaded file resources

/i # CMS images

/ww.incs # CMS function libraries

/j # CMS JavaScript files

/ww.php_classes # CMS PHP class files

/ww.plugins # CMS plugins

/ww.skins # templates

There are only two iles kept in the web root. All others are kept in whichever
directory makes the most sense for them.

www.eBookTM.Com

CMS Core Design

[14]

The two iles in the web root are:

•	 index.php—this ile is the front-end controller. All page requests are passed
through this ile, and it then loads up libraries, plugins, and so on, as needed.

•	 .htaccess—this ile contains the mod_rewrite rules that tell the web server
how to parse HTTP requests, redirecting through index.php (or other
controllers, as we'll see later) or directly to the web server, depending on the
request.

The reason I chose to use short names for /f, /i, and /j, is historical—up until
recently, broadband was not widely available. Every byte counted. Therefore,
it made sense to use short names for things whenever possible. It's a very
minor optimization. The savings may seem tiny, but when you consider that
“smartphones” are becoming popular, and their bandwidth tends to be Edge or 3G,
which is much slower than standard broadband, it still makes sense to have a habit
of being concise in your directory naming schemes.

Database structure
The database structure of a simple CMS core contains only a few tables.

You need to record information about the pages of the website, and information
about users such as administrators.

If any plugins require tables, they will install those tables themselves, but the core
of a CMS should only have a few tables.

Here's what we will use for our initial table list:

•	 pages—this table holds information about each page, such as name, id,
creation date, and so on.

•	 user_accounts—data about users, such as e-mail address, password,
and so on.

•	 groups—the groups that users can be assigned to. The only one that we will
absolutely need is "_administrator", but there are uses for this which we'll
discuss later.

For optimization purposes, we should try to make as few database queries as
possible. This will become obvious when we discuss site navigation in Chapter 3,
Page Management – Part One, where there are quite a lot of queries needed for
complex menus.

www.eBookTM.Com

Chapter 1

[15]

Some CMSes record their active plugins and other settings in the database, but it is a
waste to use a database to retrieve a setting that is not likely to change very often at
all, and yet is needed on every page.

Instead, we will record details of active plugins in the conig ile.

The coniguration ile
A coniguration ile (conig ile) is needed so that the CMS knows how to connect
to the database, where the site resources are kept, and other little snippets of
information needed to "bootstrap" the site.

The conig ile also keeps track of little bits of information which need to be used
on every page, such as what plugins are active, what the site theme is, and other
info that is rarely changed (if ever) and yet is referred to a lot.

The conig ile in our CMS is kept in a directory named /.private, which has a
.htaccess ile in it preventing the web server from allowing any access to it from
a browser.

The reason the directory has a dot at the front, instead of the usual "ww." preix, is
that we don't want people (even developers!) editing anything in it by hand, and
iles with a dot at the front are usually hidden from normal viewing by FTP clients,
terminal views, and so on.

It's really more of a deterrent than anything else, and if you really feel the need to
edit it, you can just go right in and do that (if you have access rights, and so on).

There are two ways a coniguration ile can be written:

•	 Parse-able format. In this form, the coniguration ile is opened, and any
coniguration variables are extracted from it by running a script which
reads it.

•	 Executable format. In this form, the coniguration ile is an actual PHP
script, and is loaded using include() or require().

Using a parseable ile, the CMS will be able to read the ile and if there is something
wrong with it, will be able to display an error on-screen. It has the disadvantage that
it will be re-parsed every time it is loaded, whereas the executable PHP form can be
compiled and cached by an engine such as Zend, or any other accelerator you might
have installed..

www.eBookTM.Com

CMS Core Design

[16]

The second form, executable, needs to be written correctly or the engine will
break, but it has the advantages that it doesn't need to be parsed every time, if an
accelerator is used, and also it allows for alternative coniguration settings to be
chosen based on arbitrary conditions (for example, setting the theme to a test one if
you add ?theme=test to the URL).

Hello World
We've discussed the basics behind how a CMS's core works. Now let's build a
simple example.

We will not bother with the admin area yet. Instead, let's quickly build up a
visible example of the front-end.

I'm not going to go very in-depth into how to create a test site—as a developer,
you've probably done it many times, so this is just a quick reminder.

Setup
First, create a database. In my example, I will use the name "cmsdb" for the database,
with the username "cmsuser" and the password "cmspass".

You can use phpMyAdmin or some other similar tool to create the database. I prefer
to do it using the MySQL console itself.

mysql> create database cmsdb;

Query OK, 1 row affected (0.00 sec)

mysql> grant all on cmsdb.* to cmsuser@localhost identified by
'cmspass';

Query OK, 0 rows affected (0.00 sec)

mysql> flush privileges;

Query OK, 0 rows affected (0.00 sec)

Now, let's set up the web environment.

Create a directory where your CMS will live. In my case, I'm using a Linux machine,
and the directory that I'm using is /home/kae/websites/cms/. In your case, it could
be /Users/~yourname/httpd/site or D:/wwwroot/cms/, or whatever you end up
using. In any case, create the directory. We'll call that directory the "web root" when
referencing it in the future.

www.eBookTM.Com

Chapter 1

[17]

Add the site to your Apache server's httpd.conf ile. In my case, I use virtual hosts
so that I can have a number of sites on the same machine. I'm naming this one "cms":

<VirtualHost *:80>

 ServerName cms

 DocumentRoot /home/kae/websites/cms

</VirtualHost>

Restart the web server after adding the domain.

Note that we will be adding to the httpd.conf later in this chapter. I prefer to show
things in pieces, as it is easier to explain them as they are shown.

And now, make sure that your machine knows how to reach the domain. This is easy
if you're using a proper full domain like "myexample.cms.com", but for test sites, I
generally use one-word domain names and then tell the machine that the domain is
located on the machine itself.

To do this in Linux, simply add the following line to the /etc/hosts ile on your
laptop or desktop machine:

127.0.0.1 cms

Note that this will only work if the test server is running on the machine you are
testing from (for example, I run my test server on my laptop, therefore 127.0.0.1
is correct). If your test server is not the machine you are browsing on, you need to
change 127.0.0.1 to whatever the machine's IP address is.

To test this, create an index.html ile in the web root, and view it in your browser:

<html>

 <body>

 it worked

 </body>

</html>

www.eBookTM.Com

CMS Core Design

[18]

And here is how it looks:

If you have all of this done, then it's time to create the Hello World example.

We'll discuss writing an installer in the inal chapter. This chapter is more about
"bootstrapping" your irst CMS. In the meantime, we will do all of this manually.

In your web root, create a directory and call it .private. This directory will hold
the conig ile.

Create the ile .private/config.php and add a basic conig (tailored to your
own settings):

<?php

$DBVARS=array(

 'username'=>'cmsuser',

 'password '=>'cmspass',

 'hostname'=>'localhost',

 'db_name' =>'cmsdb'

);

This will be expanded throughout the book as we add new capabilities to the system.
For now, we only need database access.

www.eBookTM.Com

Chapter 1

[19]

Note that I didn't put a closing ?> in that ile. A common problem with
PHP (and other server-side web languages) happens if you accidentally
output empty space to the browser before you are inished outputting the
headers. As we are building a templated CMS, all output should happen
right at the end of the PHP script, when we're sure we're done compiling
the output.

If you place ?> terminators at the ends of your iles, it's easy to
accidentally also place invisible break-lines (\n, \r) as well. Removing
the ?> removes that problem as well. There is no right or wrong here.
PHP is perfectly happy with iles that end or don’t end with ?>, so it is up
to you whether you do so.

We don't want people looking into the .private directory at all, so we will add a
ile, .private/.htaccess, to deny read-access to everyone:

order allow,deny

deny from all

Note that in order for .htaccess iles to work, you must enable them in your
web-server's coniguration.

The simplest way to do this is to set AllowOverride to all in your Apache
coniguration ile for the web directory, then restart the server.

An example using my own setup is as follows:

<Directory "/home/kae/websites">

 Options All

 AllowOverride All

 Order allow,deny

 Allow from all

</Directory>

You can tune this to your own needs by reading the Apache manual online.

www.eBookTM.Com

CMS Core Design

[20]

After doing this and restarting your web server, you will ind that you can load up
http://cms/ but you can't load up http://cms/.private/config.php.

Next, let's start on the front controller.

Front controller
If you remember from what we discussed earlier, when a page is requested from the
CMS, it will go through the front-end controller, which will igure out what kind of
page it is, and render the appropriate HTML to the browser.

Note that although we are using a front controller, we are not using true MVC. True
MVC is very strict about the separation of the content, the model, and the view.

This is easy enough to manage in small coding segments, but when combining
HTML, JavaScript, PHP, and CSS, it’s a lot more tricky.

Throughout the book, we will try to keep the various parts separate, but given the
choice between complex or verbose code and simple or short code, we will opt for
the simple or short route.

Some CMSes prefer to use URLs such as http://cms/index.php?page=432, but
that's ugly and unreadable to the casual viewer.

We will do something similar, but disguise it such that the end-user doesn't realize
that's basically what's happening.

www.eBookTM.Com

Chapter 1

[21]

First off, delete the test index.html, and create this ile as index.php:

<?php

header('Content-type: text/plain');

echo "POST:\n";

var_dump($_POST);

echo "\n\nGET:\n";

var_dump($_GET);

That displays any details that are sent to the server through POST or GET:

Now, let's do the redirect magic.

Create a .htaccess ile in the web root:

<IfModule mod_deflate.c>

 SetOutputFilter DEFLATE

</IfModule>

php_flag magic_quotes_gpc off

RewriteEngine on

RewriteRule ^([^./]{3}[^.]*)$ /index.php?page=$1 [QSA,L]

The mod_deflate bit compresses data as it is sent (if mod_deflate is installed).

We turn off "magic quotes" if they're enabled. Magic quotes are an old deprecated
trick used by early PHP versions to allow HTTP data to be used in strings on the
server without needing to properly escape them. This causes more problems than it
solves, so it is being removed from later PHP versions.

www.eBookTM.Com

CMS Core Design

[22]

The rewrite section takes any page name requests which are three or more characters
in length and do not contain dots, and redirects those to index.php. The QSA part
tells Apache to also forward any query-string parts, and the L tells Apache that if this
rule matches, then don't process any more.

You can test that now.

Open your browser and go to http://cms/test, and you should see the
following output:

Notice the GET array now has the page name, which we can use in the next section to
retrieve data from the database.

www.eBookTM.Com

Chapter 1

[23]

And if you put in a dot, you should get a standard 404 message:

We will discuss proper handling of 404 pages in Chapter 3, Page Management – Part
One.

Reading page data from the database
Okay—now that we can tell the CMS what page we're looking for, we need to write
code that will use that information and retrieve the right data from the database.

First, let's create the "pages" table in the database. Use your MySQL console or
phpMyAdmin to run the following:

CREATE TABLE `pages` (

 `id` int(11) NOT NULL auto_increment,

 `name` text,

 `body` mediumtext,

 `parent` int(11) default '0',

 `ord` int(11) NOT NULL default '0',

 `cdate` datetime default NULL ,

 `special` bigint(20) default NULL,

 `edate` datetime default NULL,

 `title` text,

 `template` text,

 `type` varchar(64) default NULL,

 `keywords` text,

 `description` text,

 `associated_date` date default NULL,

www.eBookTM.Com

CMS Core Design

[24]

 `vars` text,

 PRIMARY KEY (`id`)

) DEFAULT CHARSET=utf8;

This is the most important table of the database. The various parts of it are:

Name Description

id The ID of the page in the database. Must be unique. This is an
internal reference.

name When a URL http://cms/page_name is called, 'page_name' is
what's searched for in the database.

body This is the main HTML of the page.

parent In a hierarchical site, this references the 'parent' of the page. For
example, in the URL http://cms/deep/page, the 'page' entry's
parent ield will be equal to the 'deep' entry's ID.

ord When pages are listed, in what position of the list will this page
be shown.

cdate Date that the page was created on.

special This is used to indicate various 'special' aspects about a
page—such as whether the page is the site's home page, or is a
site map, or is a 404 handler, and so on. These are details that are
important enough that they should be built into the core instead of
as a plugin.

edate Date that the page was last edited on.

title This is shown in the browser's window header. When you search
online and ind pages titled "Untitled Document", it's because the
author didn't bother changing this.

template Which template (of the site skin) should this page use. We'll see
how this is used in a later chapter.

type Type of page is this. For now, we won't use this, but it becomes
important once we start using plugins.

keywords This is used by search engines.

description Again, used by search engines.

associated_
date

Pages sometimes need to have a date associated with them. An
example is a news page, where the associated date may not be the
created or last-edited date.

vars This is a 'miscellaneous' ield, where plugins that need to add
values to the page can add them as a JSON object.

We'll discuss these further throughout the book. For now, we are more concerned
with simply installing a single page.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Chapter 1

[25]

Insert two rows into the database:

mysql> insert into pages (name,body,special,type)

 values('Home','<p>Hello World</p>',1,0);

Query OK, 1 row affected (0.00 sec)

mysql> insert into pages (name,body,special,type)

 values('Second Page','<p>A Second Page</p>',0,0);

Query OK, 1 row affected (0.00 sec)

For the purposes of this test, we install two pages. The irst one, "Home", has its
special ield set to 1, which means "this is the home page". This means that if the
website is called without any particular page requested, then this page will be used
(in other words, we want http://cms/ to equate to http://cms/Home).

In both cases, we set the type ield to 0, meaning "normal". When we add plugins
later, this ield will become important.

There are four iles involved in displaying the pages.

•	 /index.php: This is the front-end controller. It receives the request, loads up
any required iles, and then displays the result.

•	 /ww.incs/common.php: This is a list of common functions for displaying
pages. For this demo, all it will do is load basics.php.

•	 /ww.incs/basics.php: A list of functions common to all CMS actions.
Includes database access and the setting up of basic variables.

•	 /ww.php_classes/Page.php: The Page class loads up page data from the
database.

The process low is as follows:

1. index.php is called by the mod_rewrite script.

2. index.php then loads up common.php which also loads basics.php.

3. index.php initializes the page, causing Page.php to be loaded.

4. index.php then displays the body of the loaded page.

Create this ile as index.php in the web root:

<?php

// { common variables and functions

include_once('ww.incs/common.php');

$page=isset($_REQUEST['page'])?$_REQUEST['page']:'';

$id=isset($_REQUEST['id'])?(int)$_REQUEST['id']:0;

// }

www.eBookTM.Com

CMS Core Design

[26]

// { get current page id

if(!$id){

 if($page){ // load by name

 $r=Page::getInstanceByName($page);

 if($r && isset($r->id))$id=$r->id;

 unset($r);

 }

 if(!$id){ // else load by special

 $special=1;

 if(!$page){

 $r=Page::getInstanceBySpecial($special);

 if($r && isset($r->id))$id=$r->id;

 unset($r);

 }

 }

}

// }

// { load page data

if($id){

 $PAGEDATA=(isset($r) && $r)? $r : Page::getInstance($id);

}

else{

 echo '404 thing goes here';

 exit;

}

// }

echo $PAGEDATA->body;

This is a simpliied version of what we'll have later on. Basically, we check to see
if the page ID is mentioned in the URL. If not, we load up the page using its name
(through the Page object) to igure out the ID.

When we have the page data imported into the $PAGEDATA variable, we simply
render it to the screen.

The ww.incs/common.php ile is pretty bare at the moment:

<?php

require dirname(__FILE__).'/basics.php';

That will include common functions to do with page display. For now, all it does is
load up the ww.incs/basics.php ile:

<?php

session_start();

www.eBookTM.Com

Chapter 1

[27]

function __autoload($name) {

 require $name . '.php';

}

function dbInit(){

 if(isset($GLOBALS['db']))return $GLOBALS['db'];

 global $DBVARS;

 $db=new PDO('mysql:host='.$DBVARS['hostname']

 .';dbname='.$DBVARS['db_name'],

 $DBVARS['username'],

 $DBVARS['password']

);

 $db->query('SET NAMES utf8');

 $db->num_queries=0;

 $GLOBALS['db']=$db;

 return $db;

}

function dbQuery($query){

 $db=dbInit();

 $q=$db->query($query);

 $db->num_queries++;

 return $q;

}

function dbRow($query) {

 $q = dbQuery($query);

 return $q->fetch(PDO::FETCH_ASSOC);

}

define('SCRIPTBASE', $_SERVER['DOCUMENT_ROOT'] . '/');

require SCRIPTBASE . '.private/config.php';

if(!defined('CONFIG_FILE'))

 define('CONFIG_FILE',SCRIPTBASE.'.private/config.php');

set_include_path(SCRIPTBASE.'ww.php_classes'

 .PATH_SEPARATOR.get_include_path());

First, we start off a session to record any data which may need to be passed from
page to page.

Next, we set an auto-load function so that we can use objects without explicitly
needing to require() their iles. You can see that in action in the index.php
where we used the Page object despite it not being explicitly included.

Next, we have three helper functions for databases. Because connecting to a database
takes up precious resources, it is a waste of time to connect to the database upon
every single request to the server. And so we connect only when the irst database
request is called, and cache that connection for the rest of the script.

www.eBookTM.Com

CMS Core Design

[28]

Next, we deine a few constants:

•	 SCRIPTBASE: This is the directory that the CMS is located in

•	 CONFIG_FILE: This is the location of the coniguration ile

There will be a few more constants later when we get to themes and uploadable iles.

Finally, we have the ww.php_classes/Page.php class ile:

<?php

class Page{

 static $instances = array();

 static $instancesByName = array();

 static $instancesBySpecial= array();

 function __construct($v,$byField=0,$fromRow=0,$pvq=0){

 # byField: 0=ID; 1=Name; 3=special

 if (!$byField && is_numeric($v)){ // by ID

 $r=$fromRow?

 $fromRow:

 ($v?

 dbRow("select * from pages where id=$v limit 1"):

 array()

);

 }

 else if ($byField == 1){ // by name

 $name=strtolower(str_replace('-','_',$v));

 $fname='page_by_name_'.md5($name);

 $r=dbRow("select * from pages where name like '"

 .addslashes($name)."' limit 1");

 }

 else if ($byField == 3 && is_numeric($v)){ // by special

 $fname='page_by_special_'.$v;

 $r=dbRow(

 "select * from pages where special&$v limit 1");

 }

 else return false;

 if(!count($r || !is_array($r)))return false;

 if(!isset($r['id']))$r['id']=0;

 if(!isset($r['type']))$r['type']=0;

 if(!isset($r['special']))$r['special']=0;

 if(!isset($r['name']))$r['name']='NO NAME SUPPLIED';

 foreach ($r as $k=>$v) $this->{$k}=$v;

 $this->urlname=$r['name'];

 $this->dbVals=$r;

 self::$instances[$this->id] =& $this;

www.eBookTM.Com

Chapter 1

[29]

 self::$instancesByName[preg_replace(

 '/[^a-z0-9]/','-',strtolower($this->urlname)

)] =& $this;

 self::$instancesBySpecial[$this->special] =& $this;

 if(!$this->vars)$this->vars='{}';

 $this->vars=json_decode($this->vars);

 }

 function getInstance($id=0,$fromRow=false,$pvq=false){

 if (!is_numeric($id)) return false;

 if (!@array_key_exists($id,self::$instances))

 self::$instances[$id]=new Page($id,0,$fromRow,$pvq);

 return self::$instances[$id];

 }

 function getInstanceByName($name=''){

 $name=strtolower($name);

 $nameIndex=preg_replace('#[^a-z0-9/]#','-',$name);

 if(@array_key_exists($nameIndex,self::$instancesByName))

 return self::$instancesByName[$nameIndex];

 self::$instancesByName[$nameIndex]=new Page($name,1);

 return self::$instancesByName[$nameIndex];

 }

 function getInstanceBySpecial($sp=0){

 if (!is_numeric($sp)) return false;

 if (!@array_key_exists($sp,$instancesBySpecial))

 $instancesBySpecial[$sp]=new Page($sp,3);

 return $instancesBySpecial[$sp];

 }

}

This may look complex at irst glance, but it's not all that bad.

There are three methods, getInstance, getInstanceByName, and
getInstanceBySpecial, each of which inds the requested page using its
own method:

•	 getInstance is used if you know the ID of the page.

•	 getInstanceByName is used if you know the name of the page. We'll expand
this later to include hierarchical names such as "/sub/page/one".

•	 getInstanceBySpecial is used if there's no particular page requested,
but it's a special case. For example, the front page has the value 1. This is
recorded as a bit mask, so for example, if a page is both the front page and
a sitemap (shown later), then it would be recorded as 3, which is 1 plus 2
(values of Home Page and Sitemap respectively).

www.eBookTM.Com

CMS Core Design

[30]

With this code in place, you can now load up pages. Here's an example using the
page name "Home", as seen in the next screenshot:

Notice that the request uses the lower-case home instead of the upper-case "Home".
Because MySQL is case-insensitive by default, and humans tend to not care whether
something is upper-case or lower-case, it makes sense to allow any case to be used at
all in the page name, as seen in the next screenshot:

www.eBookTM.Com

Chapter 1

[31]

And in the case that no page name is given at all, the index.php ile will load up
using the special "home page" case:

And inally, in the case that a page simply doesn't exist at all, we are able to trap that,
as seen in the next screenshot:

Because we can trap this 404, we can do some interesting things such as show a list of
possible matches that the reader can then choose from. This won't be handled in this
book, but feel free to either redirect to the root or a search page, or any other solution
you want.

www.eBookTM.Com

CMS Core Design

[32]

Summary
In this chapter, we looked at how a CMS works, and built enough of the basics
that we could then view a "Hello World" page, in a few different ways, with
404s trapped as well.

In the next chapter, we will discuss how users and groups work, to allow
granular permissions, and we will build a login script, including forgotten
password functionality and captchas.

www.eBookTM.Com

